Python的全部内置方法
当用Python定义一个类的时候,其实有一些固定的方法,这些方法是固定的,当然程序员是可以根据自己的需求去更改。
每次我在使用这些方法的时候,我还需要去自己去查,很麻烦,因此我打算总结一套全部的内置方法。
关于对象周期的方法
这部分其实主要就是构造方法和析构方法。
构造方法
__new__(cls,[...)
或许大部分人认为构造方法为
__init__()
,其实在这之前还有一个方法,这个方法在对象实例化的时候调用,而且比__init__()
执行的时间还要早,但不经常用,除非特殊情况。__init__(self,[...])
这就很常见了,一般用作初始化,注意,形参的参数是决定实例化的时候传进来的参数,所以这很重要,一般都会自己去重写。
析构方法
__del__(self)
主要是在销毁的时候会调用这个方法,但是需要注意的是,当Python解释器退出但对象仍然存活的时候,
__del__
()并不会 执行。 所以养成一个手工清理的好习惯是很重要的,比如及时关闭连接。
操作符
有些方法可以根据操作符执行,利用好的话可以玩出很多花样。
比较运算符
__cmp__(self, other)
它上定义了所有比较操作符的行为(<,==,!=,等等),当使用这些运算符的时候就会调用,但其实并不常用,因为不方便,不能判断使用的是哪种运算符。
__eq__(self, other)
定义等于操作符(==)的行为。
__ne__(self, other)
定义不等于操作符(!=)的行为。
__lt__(self, other)
定义小于操作符(<)的行为。
__gt__(self, other)
定义大于操作符(>)的行为。
__le__(self, other)
定义小于等于操作符(<)的行为。
__ge__(self, other)
定义大于等于操作符(>)的行为。
数值操作符
一元操作符
一元操作符只有一个操作符。
__pos__(self)
实现取正操作,例如 +some_object。
__neg__(self)
实现取负操作,例如 -some_object。
__abs__(self)
实现内建绝对值函数 abs() 操作。
__invert__(self)
实现取反操作符 ~。
__round__(self, n)
实现内建函数 round() ,n 是近似小数点的位数。
__floor__(self)
实现
math.floor()
函数,即向下取整。__ceil__(self)
实现
math.ceil()
函数,即向上取整。__trunc__(self)
实现
math.trunc()
函数,即距离零最近的整数。
二元运算符
也就是基本的算数运算符。
__add__(self, other)
实现加法操作。
__sub__(self, other)
实现减法操作。
__mul__(self, other)
实现乘法操作。
__floordiv__(self, other)
实现使用 // 操作符的整数除法。
__div__(self, other)
实现使用 / 操作符的除法。
__truediv__(self, other)
实现
_true_
除法,这个函数只有使用from __future__ import division
时才有作用。__mod__(self, other)
实现 % 取余操作。
__divmod__(self, other)
实现
divmod
内建函数。__pow__
实现 ** 操作符。
__lshift__(self, other)
实现左移位运算符 << 。
__rshift__(self, other)
实现右移位运算符 >> 。
__and__(self, other)
实现按位与运算符 & 。
__or__(self, other)
实现按位或运算符 | 。
__xor__(self, other)
实现按位异或运算符 ^ 。
反射运算符
radd__(self, other)
实现反射加法操作。
rsub__(self, other)
实现反射减法操作。
rmul__(self, other)
实现反射乘法操作。
rfloordiv__(self, other)
实现使用 // 操作符的整数反射除法。
rdiv__(self, other)
实现使用 / 操作符的反射除法。
rtruediv__(self, other)
实现
_true_
反射除法,这个函数只有使用from __future__ import division
时才有作用。rmod__(self, other)
实现 % 反射取余操作符。
rdivmod__(self, other)
实现调用
divmod(other, self)
时divmod
内建函数的操作。rpow__(self, other)
实现 ** 反射操作符。
rlshift__(self, other)
实现反射左移位运算符 << 的作用。
rshift__(self, other)
实现反射右移位运算符 >> 的作用。
rand__(self, other)
实现反射按位与运算符 & 。
ror__(self, other)
实现反射按位或运算符 | 。
rxor__(self, other)
实现反射按位异或运算符 ^ 。
增强赋值运算符
__iadd__(self, other)
实现加法赋值操作。
__isub__(self, other)
实现减法赋值操作。
__imul__(self, other)
实现乘法赋值操作。
__ifloordiv__(self, other)
实现使用 //= 操作符的整数除法赋值操作。
__idiv__(self, other)
实现使用 /= 操作符的除法赋值操作。
__itruediv__(self, other)
实现
_true_
除法赋值操作,这个函数只有使用from __future__ import division
时才有作用。__imod__(self, other)
实现 %= 取余赋值操作。
__ipow__(self, other)
实现 **= 操作。
__ilshift__(self, other)
实现左移位赋值运算符 <<= 。
__irshift__(self, other)
实现右移位赋值运算符 >>= 。
__iand__(self, other)
实现按位与运算符 &= 。
__ior__(self, other)
实现按位或赋值运算符 | 。
__ixor__(self, other)
实现按位异或赋值运算符 ^= 。
类型转换
__int__(self)
实现到
int
的类型转换。__long__(self)
实现到long的类型转换。
__float__(self)
实现到float的类型转换。
__complex__(self)
实现到complex的类型转换。
__oct__(self)
实现到八进制数的类型转换。
__hex__(self)
实现到十六进制数的类型转换。
__index__(self)
实现当对象用于切片表达式时到一个整数的类型转换。如果你定义了一个可能会用于切片操作的数值类型,你应该定义
__index__
。__trunc__(self)
当调用
math.trunc(self)
时调用该方法,__trunc__
应该返回 self 截取到一个整数类型(通常是long类型)的值。__coerce__(self)
该方法用于实现混合模式算数运算,如果不能进行类型转换,
__coerce__
应该返回 None 。反之,它应该返回一个二元组 self 和 other ,这两者均已被转换成相同的类型。
类的表示
__str__(self)
定义对类的实例调用
str()
时的行为。__repr__(self)
定义对类的实例调用
repr()
时的行为。str()
和repr()
最主要的差别在于“目标用户”。repr()
的作用是产生机器可读的输出(大部分情况下,其输出可以作为有效的Python代码),而str()
则产生人类可读的输出。__unicode__(self)
定义对类的实例调用
unicode()
时的行为。unicode()
和str()
很像,只是它返回unicode字符串。注意,如果调用者试图调用str()
而你的类只实现了__unicode__()
,那么类将不能正常工作。所有你应该总是定义__str__()
,以防有些人没有闲情雅致来使用unicode。__format__(self)
定义当类的实例用于新式字符串格式化时的行为,例如,
"Hello, 0:abc!".format(a)
会导致调用a.__format__("abc")
。当定义你自己的数值类型或字符串类型时,你可能想提供某些特殊的格式化选项,这种情况下这个方法会非常有用。__hash__(self)
定义对类的实例调用
hash()
时的行为。它必须返回一个整数,其结果会被用于字典中键的快速比较。同时注意一点,实现这个方法通常也需要实现__eq__
,并且遵守如下的规则:a == b
意味着hash(a) == hash(b)
。__nonzero__(self)
定义对类的实例调用
bool()
时的行为,根据你自己对类的设计,针对不同的实例,这个方法应该相应地返回True或False。__dir__(self)
定义对类的实例调用
dir()
时的行为,这个方法应该向调用者返回一个属性列表。一般来说,没必要自己实现__dir__
。
访问控制
__getattr__(self, name)
当用户试图访问一个根本不存在(或者暂时不存在)的属性时,你可以通过这个魔法方法来定义类的行为。这个可以用于捕捉错误的拼写并且给出指引,使用废弃属性时给出警告(如果你愿意,仍然可以计算并且返回该属性),以及灵活地处理AttributeError。只有当试图访问不存在的属性时它才会被调用,所以这不能算是一个真正的封装的办法。
__setattr__(self, name, value)
和
__getattr__
不同,__setattr__
可以用于真正意义上的封装。它允许你自定义某个属性的赋值行为,不管这个属性存在与否,也就是说你可以对任意属性的任何变化都定义自己的规则。然后,一定要小心使用__setattr__
,这个列表最后的例子中会有所展示。__delattr__(self, name)
这个魔法方法和
__setattr__
几乎相同,只不过它是用于处理删除属性时的行为。和__setattr__
一样,使用它时也需要多加小心,防止产生无限递归(在__delattr__
的实现中调用del self.name
会导致无限递归)。__getattribute__(self, name)
__getattribute__
看起来和上面那些方法很合得来,但是最好不要使用它。__getattribute__
只能用于新式类。在最新版的Python中所有的类都是新式类,在老版Python中你可以通过继承 object 来创建新式类。__getattribute__
允许你自定义属性被访问时的行为,它也同样可能遇到无限递归问题(通过调用基类的__getattribute__
来避免)。__getattribute__
基本上可以替代__getattr__
。只有当它被实现,并且显式地被调用,或者产生AttributeError
时它才被使用。 这个魔法方法可以被使用(毕竟,选择权在你自己),我不推荐你使用它,因为它的使用范围相对有限(通常我们想要在赋值时进行特殊操作,而不是取值时),而且实现这个方法很容易出现Bug。
自定义序列
有许多办法可以让你的Python类表现得像是内建序列类型(字典,元组,列表,字符串等)。
__len__(self)
返回容器的长度,可变和不可变类型都需要实现。
__getitem__(self, key)
定义对容器中某一项使用
self[key]
的方式进行读取操作时的行为。这也是可变和不可变容器类型都需要实现的一个方法。它应该在键的类型错误式产生TypeError
异常,同时在没有与键值相匹配的内容时产生KeyError
异常。__setitem__(self, key)
定义对容器中某一项使用
self[key]
的方式进行赋值操作时的行为。它是可变容器类型必须实现的一个方法,同样应该在合适的时候产生KeyError
和TypeError
异常。__iter__(self, key)
它应该返回当前容器的一个迭代器。迭代器以一连串内容的形式返回,最常见的是使用iter()
函数调用,以及在类似for x in container:
的循环中被调用。迭代器是他们自己的对象,需要定义__iter__
方法并在其中返回自己。__reversed__(self)
定义了对容器使用
reversed()
内建函数时的行为。它应该返回一个反转之后的序列。当你的序列类是有序时,类似列表和元组,再实现这个方法。__contains__(self, item)
__contains__
定义了使用in
和not in
进行成员测试时类的行为。你可能好奇为什么这个方法不是序列协议的一部分,原因是,如果__contains__
没有定义,Python就会迭代整个序列,如果找到了需要的一项就返回 True 。__missing__(self ,key)
__missing__
在字典的子类中使用,它定义了当试图访问一个字典中不存在的键时的行为(目前为止是指字典的实例,例如我有一个字典 d ,"george"
不是字典中的一个键,当试图访问d["george"]
时就会调用d.__missing__("george")
)。
反射
__instancecheck__(self, instance)
检查一个实例是否是你定义的类的一个实例(例如
isinstance(instance, class)
)。__subclasscheck__(self, subclass)
检查一个类是否是你定义的类的子类(例如
issubclass(subclass, class)
)。
可调用对象
__call__(self, [args...])
允许类的一个实例像函数那样被调用。本质上这代表了
x()
和x.__call__()
是相同的。注意__call__
可以有多个参数,这代表你可以像定义其他任何函数一样,定义__call__
,喜欢用多少参数就用多少。
上下文管理器
__enter__(self)
定义使用
with
声明创建的语句块最开始上下文管理器应该做些什么。注意__enter__
的返回值会赋给with
声明的目标,也就是as
之后的东西。__exit__(self, exception_type, exception_value, traceback)
定义当
with
声明语句块执行完毕(或终止)时上下文管理器的行为。它可以用来处理异常,进行清理,或者做其他应该在语句块结束之后立刻执行的工作。如果语句块顺利执行,exception_type , exception_value
和traceback
会是None
。否则,你可以选择处理这个异常或者让用户来处理。如果你想处理异常,确保__exit__
在完成工作之后返回True
。如果你不想处理异常,那就让它发生吧。
创建描述符对象
__get__(self, instance, owner)
定义当试图取出描述符的值时的行为。 instance 是拥有者类的实例, owner 是拥有者类本身。
__set__(self, instance, owner)
定义当描述符的值改变时的行为。 instance 是拥有者类的实例, value 是要赋给描述符的值。
__delete__(self, instance, owner)
定义当描述符的值被删除时的行为。instance 是拥有者类的实例。
拷贝
__copy__(self)
定义对类的实例使用
copy.copy()
时的行为。copy.copy()
返回一个对象的浅拷贝,这意味着拷贝出的实例是全新的,然而里面的数据全都是引用的。也就是说,对象本身是拷贝的,但是它的数据还是引用的(所以浅拷贝中的数据更改会影响原对象)。__deepcopy__(self, memodict=)
定义对类的实例使用
copy.deepcopy()
时的行为。copy.deepcopy()
返回一个对象的深拷贝,这个对象和它的数据全都被拷贝了一份。memodict
是一个先前拷贝对象的缓存,它优化了拷贝过程,而且可以防止拷贝递归数据结构时产生无限递归。当你想深拷贝一个单独的属性时,在那个属性上调用copy.deepcopy()
,使用memodict
作为第一个参数。